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1 Introduction

The purpose of this book is to provide the derivation of Einstein’s Geometric
Theory of Gravity starting from the basics. Through tensor analysis and differ-
ential forms we will derive the Bianchi identity. We then tie the conservation of
energy-momentum to the "automatically” conserved feature of the geometry.
We will derive:

G = 8aT" (1)

As with the referenced books, this book must be read and re-read to make
sense. But in absolutely no case do we skip a step so that you have all the
material needed without wondering what mountain was skipped and where did
this come from. Again its all here with references. In only some cases do we
show an equation without a derivation but we point out that the full derivation
appears in a later chapter in a more elegant form.

2 Tensors in Euclidian Space

We are going to look into invariants under coordinate transformation and also
curvilinear coordinate systems. This material will lead to Tensors.

We start by examining a vector A that is tangent to a parametric curve in
three dimensions at point P. See Figure. Let eq, e3, e3 denote the unit vectors
in the z,y, z direction in E3. These are the same as the familiar unit vectors,
i,j,k. Let the projection of the vector A on the unit vectors be A, Ay, As.
Then the length of A is:

|A]> = A7 + A3 + A3 (2)

Now we want to define a new set of orthonormal coordinate vectors but
associated with curvilinear coordinates. We want to express the length of
A in this coordinate system. The length should be invariant under the new
coordinate system. Consider spherical polar coordinates. In Figure the
coordinates of point P in rectangular coordinates are:

psin 6 cos ¢
= psinfsing
3 = pcosh (3)

where the notation 2%, = 1,2, 3 denotes the rectangular coordinates and is
a prelude to notation to be introduced with tensors.

At point P we construct the three orthonormal vectors €y, €a, €3 tangent to
the coordinate curves p = ¢1,0 = c2,¢ = c3 . The components are given by,



A Y(s)

Figure 1: Parametric Curve with Tangent Vector A at point P

€1 = (sinfcos ¢,sinfsin ¢, cos b)
ea = (cosfcos@,cosfsingp, —sinb)
€3 = (_ sin ¢7 COs ¢7 0) (4)

Now consider an arbitrary displacement dr from the position P. See Figure

In rectangular coordinates dr = dz'eq + dreq + dx3es. How do we express
dr in terms of dp, df,d¢p? We need to project dr unto €y, €2, €e3. We get,

dr = dpey + pdfes + psin Odpes (5)

Let the vector A be the tangent to the parametric curve v(s) with parameter
s. Then in rectangular coordinates:

_ dr  dz! dz? dz3

= —_—=a — — P 6
ds dse1+d362+ dseS (6)
Define A = %,Ag = dd—“”;,Ag = %. Also define 4; = %,/_12 = %7%—13 =
do
E-
Then,
A:[llel +p/12€2 +pSiH9A3€3 (7)

It follows from that,



Figure 2: Spherical Coordinates and Orthonormal Basis Coordinates at P

Al =A. €1
pAs = A ez
psinfA; = A - ez (8)
Based on ( [4]),
A, = sinfcospA; + sinfsin pAy + coshAs
- 1
Ay = ; (cosfcos pAq + cosfsin pAy — sin§)
A, = smgbA n cosgbA )

psin @ ! psin 6 2
Since €1, €2, €3 are orthonormal, then the length of A is( see([7)):
|A|2 = A2 + p2 A3 + p*sin® A2 (10)

8



Figure 3: Differential dr from Point P

The length is invariant so the length computed by and are the

same.

Define the Matrix, B
G = diag(1, p*, p* sin® 0) (11)

Then,

|A]2 = [A; Ay A3)G[A; Ay A5)T (12)
For rectangular coordinates, define G = diag(1,1,1). Then,

|A|2 = [A; Ay A3)G[A; Ay A3)T (13)
Also in terms of dr, we have,

|dr|? = [da! da? d2®]G[dat da? da®]” (14)

and

|dr|? = [dp dO d¢|G[dp dO d¢|” (15)

We will now derive the above via another formulation.



Define,

_1:

T =p
=0
P =¢

(16)

Now, the spherical coordinates are related to the rectangular coordinate:

(17)

This notation is to be interpreted as follows: z! which is p, is a function of

1
1 ,.2

2l 22, 23 the rectangular coordinates (z,y, z) through a potentially nonlinear

function x!(z!, 2%, 3) which we abbreviate z!(2%),i = 1,2,3. We could have
used a function f(z',z% 2?), but the notation does not create ambiguity.
Now, suggest that A; are related to A; via a 3 x 3 matrix. That matrix

relationship is:

Now refering to we have,

L= zlginz?
2 = zlsinz?
22 = Zlcosz?

(18)

(19)

Following [8], the matrix of derivatives dz" /377 of this transformation is,

Ol sinz% cos °  Z'cosZ2cosT
— ) = [ sinz%sinz® Z'cosz’sinz
(9337 _92 1 e =
COST —Z sinT
Also,
iy sinZz2cosZ® sinZ
< 89c > _ cos 72 cos T° cos Z2sin @
h - zl
Ox _ _sin z3
z1 sin 22 z1 sin 22

(20)

(21)

?Thus, substituting fromi in we infer that, according to this pre-
scription, the components A; of the vector A are given in spherical polar

coordinates by,” [§]

10



A, = sinZ?cosTPA; +sinZ2sin 7 A + cos T2 As
- cos Z2 cos ° cos Z2 sin 73 sin 72
Ay = — A+ — Ay — — Az
T T T
— sin 73 cos T3
A3 = g sAt T54A (22)
Tlsinz Tlsinz

Consider the scalar function ¢(z") of the coordinates z. This function is
said to be a scalar or invariant under the transformation (17) if its transform
¢(77) possesses the same numerical value:

o(x’) = ¢(a") (23)

Both sets of coordinates refer to the same point P of E3.

The gradient of the scalar function ¢(x") is defined by the vector d¢/dx".
For reference, let qﬁgx Y, g be a scalar function in rectangular coordinates.
@ s
Then V¢(:v,y, Oxl + ggd + 82
Now lets differentiate gb(:cj) w1th respect to 77 to obtain the gradient. Using
the chain rule:

0 =0z 9

99 _ 24
oxJ = 07 Ozl (24)
As a tensor: 83 e 8
o z" O¢

99 _ox 99 2

oxd  0x7 OxM (25)
Note the dummy index h.
It would be useful to write

vi =2 v, (26)

Now lets consider the tangent to the curve at point P. The curve is defined
by o' = x%(s) . The tangent vector field T = (T%) is defined by,

. drt
T = 27
T (27)
To express the same curve in the barred coordinate system,
T =7'(t). (28)
The tangent vector is:
_,dT’
T = 29
I (29)

By the chain rule we can write,

11



dz'  9z' da”

= 30
ds Ox" ds (30)
Or,
. ozt
T =T 31
5" (31)
Operation Type Relation
Tangent Contravariant ”ffsi = gi% d;;
Gradient Covariant Vo =35Vo
In general:
Type Relation
Contravariant | T% = T’“g%;
Covariant T, = Tjg—g

Note that for contravariant tensor the index is placed as superscript and
for covariant it is placed as subscript.

A very important property of contravariant and covariant tensors is that
their inner product is an invariant.

Thus,

—q k
T = —— =——T"T}, (32)
x0T
Lets perform the process of contraction on j and [ where we let j =1, i.e.,
we form an inner product,

TIT; = 6pTTy, = T Ty, (33)
where we have used

5t 0w % 39

j:
Note that for 52 the inner index k represents row and the outer index h

represents column.

As[R] points out this result is indeed very satisfactory, as an invariant re-
sembling an inner product has been constructed.

A vector is represented as :

A; = [Ay Ay A5)T (35)
Now with G the matrix defined in , we define,

Al = G[A; Ay AT (36)



Or,
Then the length squared of the vector A can be expressed as,

|A]? = A, A (38)
Of course the length is invariant, |A|> = |A|? and,

|A]? = A A (39)

So again the inner product of a contravariant and covariant vector yield an
invariant.

Now, referring to we see that the matrix g;; can be used to raise the
index of a vector. The matrix g;; is referred to as the metric.

Also the inverse of the metric is denoted as,

g =a (10)
And, N
939" = ij (41)
We can write the arc lengths as,
\dr|* = g;;dz'dz’ (42)

and,
|dr|* = g;jdx'da’ (43)
Covariant Differentiation

Consider the partial differentiation of the transformation law,

_ ox"

Ti = Trﬁ 44
Br (44)
Thus,
T. . 7 2.7
oT;  0T; 0w 0%x (45)

ozk — ozk ozt | T oxkox

: 0%z oT; _ OT; 9x7
Now if tbe term 55— = 0 then, 5= = 535 transfor.ms as tensor.
However, this only holds true in, for example, rectangular coordinate systems.
It does not hold true in curvilinear coordinate systems. So we have a problem.

. . 2 r .
To resolve this problem we need an expression for % which should be

related to the metric for the curvalinear coordinate system.

13



Christoffel Symbols
In order to proceed we define the Christoffel symbols of the first kind:

1] 0 0 0
ijr = 3 @(gﬂc) + @(Qki) - W(gij) (46)

The symbols are related to the metric and their significance will become
apparent in the following developments. Although at this point we define the
Christoffel symbols as indicated we will show how they arise in the development
of differential forms in later chapters. For now we are trying to resolve the
problem with differentiation outlined above.

A good example for the computation of the Christoffel symbols is provided
in [6] from the metric of spherical coordinates. In this case,

1 0 0
G=|0 (a1 0 (47)
0 0 (2')?sin?a?
Ly = —a!
Iy = —a
Ty = —a'
331 = —a'sin?a?
Iso3 = (21)?sinz? cosz?
Is30 = —(z!)?sina? cosz?
F133 = .’1,‘1 Sil’l2 3?2
33 = 2'sin?a?
Tozs = (21)?sinz? cosz?
(48)
Note all other terms are zero.
Basic properties of the Christoffel symbols of the first kind are [0]:
(i) Tk = T'jix(Symmetry in the first two indices)
(ii) all T';;x vanish if all g;; are constant
A wusful formula: 5
Jik
D Lijr + s (49)

Thus in any coordinate system in which the metric tensor has constant
components the Christoffel symbols uniformly vanish.

14



Transformation Law See [6] for derivation of the following:

fo _p 0¢dwod - 0% Oz
ik = L rsto3i 9z ok | 7 0zioi Oz

Christoffel Symbols of the Second Kind

Definition:

k=9 Tjkr

(50)

(51)

Similar to raising the third subscript but we are not dealing with a tensor.

Basic properties carry over from I';jy:
(i) T%; = T},;(Symmetry in the first two indices)

(ii) all sz vanish if all g;; are constant

Transformation Law See [6] for derivation of the following:
Sy Ox' 9x° Ox! Pax" Ozt
R T A
An Important Formula

0%z _, Oz" . Ox® Ozt

= =T, -T =
AT OTI U ozs st 9zt Oz

We are now in a position to address Covariant Differentiation.

substitute for % based on :

OT; _ 0T, 02" 0a* . (g, 02" [, 0a* Ou'
oTk — ozk ozt ATk U ozs st 9zt Ok
0T, 0x" Ox° ox"™ 0x°
|y P N
= 9zc oz ozk ot T brslt oo 5k

which rearranges to

OTi g7, _ <8TT - rgsTt) Oz Ox°

ozxk ozxs ozt Ok

(52)

(53)

In (1)

(54)

(55)

This is a defining law of a covariant tensor of order two. Thus by subtracting
linear combinations of the components of T from itself we get a tensor. These

corrections are related to the metric via the Christoffel symbols.

15



Definition

The Covariant Derivative with respect to z* of a covariant vector T; is the
tensor

- F’?th> (56)

Definition

The Contravariant Derivative with respect to z* of a contravariant vector
Tk is the tensor

) oT" )
Vi T" = (8:10"0 + Fith> (57)
From [13] :

Transformations and Tensors

The major objective of tensor analysis is to determine algabraic
representations for physical or geometric relations in a form inde-
pendent of coordinate system, that is, we look for the algabraic and
geometric invariants of a given transformation group.

In addition to this comment, [I3] adds,”in considering the processes of dif-
ferentiation in a Riemannian space, the concept of invariance should be kept in
the foreground. The general form of a geometric or physiscal law is independent
of coordinate system when expressed entirely in terms of tensors.”

From [13] :
Riemannian Geometry
Definition
An n-space endowed with a covariant tensor g, of second order,
which is symmetric, is said to be a Riemannian space. The geometry
of the space is said to be Riemannian.
Definition A quadratic differential form
ds? = gjpda? da® (58)

can be asociated with the tensor gj. It is called the fundamental
metric form of the space and g;; is said to be the fundamental
metric tensor.

Note that we do not require that ds? be positive definite in anticipation of
General Relativity.

16



Conjugate or Associated Metric Tensor TFor the metric gj; the tensor
¢7* for which,

9irg™® =0, (59)
gkjgpk = 6jp (60)

is defined as the conjugate or associated metric tensor.

Raising and Lower Indices If 7% are the components of a given tensor,
then

T) = g1 T (61)
Tkp = gklgpjT” (62)

Note that although the tensors {T%}{T};},{T7}, {T";} are distinct from the
algebraic point of view, each represents the same geometric or physical entity
[13].
. . ;)
We introduce the notation 9, = 57

With the covariant divergence of V* given by,

V. VH# =0, V*+Th VA (63)
It can be shown that ,
1
Iy = —=0d\/lgl (64)
oVl

where |g| is the determinant of g;;.
Thus,

ViV = 0, (/IglV"). (65)

VIl

Some Applications
Laplacian

Consider a scalar function ¢. Its gradient is a covariant vector V;¢. The
contravariant form can be obtained by raising the index, ¢*/V;¢. In Cartesian
coordinates both the covariant and contravariant vector are equal to V¢. Take
the contravariant derivative of "/ V;¢ to obtain:

Vig?V;¢ (66)
Now take the trace,
0 0 ol
2p= — (g"== ) +T7, g'F —— 67
v (b 813] (g 8,%1) + ]kg 8171 ( )

17



But,
i 1 0y/lg| ;
F;kg e — | |g i (68)

\/m oxI

Leading to

2p— L0 ij 90

In orthogonal coordinates the metric is diagonal (g;; = hi, gix = 0,4 # 7).
Hence,

Vg L [0 (hehs 00 | 0 (hshy 00 O (Iuhy 09
h1h2h3 ozl h1 oxt Ox2 h2 Ox2 ox3 hg O3

(70)
For spherical coordinates,
1 0 0
G=1|0 (z)? 0 (71)
0 0 (2')%sin®z?

In terms of (r,0,¢), hy = 1,ho =12 hz = r?sin6, /g = r?sin 6 the Laplacian

is,
SR NI Y7 WS NI () S Wi
vf_r28r " or +r2sin069 Sma{)@ +r231n293¢2 (72)

Divergence

The divergence is,
1

V.V = ——0,(\/]1glV"). 73
T (V1glV*) (73)

For (z',22,2%) we use (r,0,¢) as before. We have \/|g| = r?sinf. Now the
Vo Vo Gee @ Then,

components (V1, Va2, V3) correspond to V., 72, —=2.

1 . 0(r*V,) O(Vpsin ) oV
po— y ——2
V.V aind (51n9 5 +r 50 r 9 (74)
Finally,
1 9(r?V,) 1 0(Vpsind) 1 0V,
o )
ViV r2  Or + rsin 6 00 rsin® ¢ (75)

3 Parallel Transport

Consider the vector U at a on the curve in the two dimensional space shown
in Figure [ Now using the construction shown parallel transport U to the
position b. Let the interval a — b be very small. Note that the length of U does
not change. Now consider Figure 5l In this case we have transported vector U

18



along the closed curve, and, as shown it ends up right on top of itself at a. Note
also that the path of the tip of U also depends on the curve. Now consider if
we started out at f with vector U. Now if we parallel transported U along the
path f —e—d—c—b—a to a or if we took the path along f —g —h —a in
this case the vector will coincide at a. So in flat space it turns out that the
parallel transport of a vector along two curves to a common point will end up
with the vectors unchanged at that point independent of the path taken. This
is a property of flat space.

By the way, we are using the ”Shild’s Ladder” construction, see [3] Box
10.2, over small incremental (differential) points along the curves to parallel
transport the vector.

Figure 4: Parallel Transport

Now consider the curved space show in Figure[6] Obviously we are dealing
with more than two dimensions in this case. Now the vector at P; is le .
We have two paths to the point P,. One is along curve C' and the other is
along curve C*. Using the ”Shild’s Ladder” construction along path C parallel
transport Xgl) from P; to P,. Now do the same along path C*. The vector

X{l) ends up with a different orientation at P, than the same vector parallel
transported along path C. This is a property of curved space (later curved
spacetime). It is important to note that the final orientation of the vector
parallel transported from point P; to point P» depends on the curve along
which it is transported. This is very important. Since, in the development of
the covariant derivative to be presented next, it will be clear that the derivative

19



Figure 5: Parallel Transport in Flat Space

is taken with respect to a curve (or path) in the Euclidean space.
Figure [] is adapted from [g].

C*

Figure 6: Parallel Transport Curved Space

20



Covariant Derivative

Consider the n-dimensional space shown in Figure [} Also shown is a curve
defined parametrically at the point P(\) with parameter A\. The vector v is
defined at A\g on the curve. Now, obtain the value of the vector field v at the
point P(A+€). This is v(Ag+e€). Now parallel transport the vector back to the
point P(\g). See Figure m The change in the vector is Vyv. So the definition
of the Covariant Derivative of v along u (which defines the direction) is:

{ [v()‘O + €>]parallel transported to Ao — V(>\0) }

€

Vav = lim (76)

e—0
For the vector v to be parallel transported along the curve in the direction
of u, the tangent vector, we require that V,v =0

When u is the tangent vector to a curve P(\), u = dP/d), one uses the
notation DT? /d\ for the components of V,,T.

From [13]:

Although the method of presentation may be quite different
from the original, the following ideas are essentially those of the
Italian mathematician Tullio Levi-Civita. Suppose we restrict our
consideration to a curve C in Euclidean space. Let V7 = VJ()) be
components of a vector field of parallel vectors of constant magni-
tude along a curve C (parallel in the Euclidean sense); then

v’
— =0 7
N (77)
A definition of a parallel vector field in a Riemannian space is in-
troduced only with respect to a given curve C of that space. The
analytic form of the concept is inferred directly from .

4 Geodesics

Definition Let V be a vector field along a curve in C in a Riemannian space.
The vector field is said to be a parallel vector field with respect to the curve C
if and only if

DV
We define the DIRECTIONAL COVARIANT DERIVATIVE to be[2]:
D dat
DRk (79)

21



Figure 7: Covariant Derivative of v along u

We define PARALLEL TRANSPORT of a vector V' along the path x%()\) to be the
requirement that the covariant derivative of V* along the path vanishes:

BV: dz?

NV =
Y d}\VZV 0 (80)

Define the tangent vector as T%, then
TV, VP =0 (81)

Note a curve that parallel transports its tangent vector is a geodesic. Let the
tangent vector be T%:
TV, T =0 (82)

defines a geodesic curve.
We will also use the notation VT for 22T for Tensor T}.

Theorem Let V be a parallel vector field with respect to a curve C. The
magnitude of V is constant.

Theorem Let A and B be a parallel vector fields along a curve C. The angle
determined by A and B is constant along C.

Geodesic From the above theorem lets consider the definition of a geodesic.

From [12]:

22



Intuitively, geodesics are lines that ”curve as little as possible”;
they are the ”straightest possible lines” one can draw in a curved
geometry. Given a derivative operator, V,, we define a geodesic to
be a curve whose tangent vector is parallel propagated along itself
when parallel propagated along itself, i.e. a curve whose tangent,
T satisfies the equation

TV, T’ =0 (83)

t1

s= [ fdt, f<

to

Definition Suppose that a curve x/ = x’(t) joins points Py and P; then
dx? dx*

a%dt)é (84)

is said to be the distance from Py to P; along the given curve.

9ik

24 (dz2)24(da?)?|

. . d
For example in rectangular coordinates, g;i = 0k, and f = A ]

and s is clearly the arc length along the curve x7 = x7(t).

Theorem For a curve C joining Py and P; to be minimum length it is nec-
essary that the parametric equations satisfy the Euler-Lagrange equations

af  Of/ox’
— — =0. 85
oxJ dt (85)
where
I = (g5t (86)
) dx?
) = — 87
x = (87)
Theorem If f is given by:
ik L
f=(gpx*x* )z f#0 (88)
the Euler-Lagrange differential equations are equivalent to the set
— d(ln f) .
XJ + F;qxpxq = TXJ (89)

Furthermore, if the parameter t represents arc length s, then the above reduces
to

Pxi
TR =0 (90)
where
. dxd
%I = d—’; (91)
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Definition The curves satisfying the differential equation in is said to
be a geodesic of the space.

Since the geodesic differential equations is second order, a unique solution

is determined at a point Py when z, and #) are given; that is, a point and a

direction uniquely determine a geodesic at a given point.

Simplifications when g;; is diagonal

i i _ 9 (1
Fij = Fji = ond (21n|gn’|) (92)
i 1 L,
Fjj = *Eaigjj (i # 7) (93)
All other Fék vanish (94)

Geodesic Example

One way to compute the Christoffel coefficients F;{;q is to derive the geodesic
equation using variation (Lagrangian) from which we can read off the
various coefficients.

Example in Polar Coordinates First lets work with polar coordinates [2].
In this case,

ds? = dr* +r*do? (95)

The none zero components of the inverse metric are ¢"” = 1 and ¢%¢ = r—2.

The connection coefficients are,

1,
F;r = 59 p(argrp + 87“9/)7" - apgrr) =
1

= igrr(argrr + argrr - 87“97‘7‘) +

1 0
59 (8rgr0 + arg9r - a@grr)

1 1

= 3(MO+0-0)+5(0)(0+0-0)
=0.

1
o = 59”(5’999;) + 0990 — 0pgoeo)
1
= §grr(8099r + O Grr — 67”97“7") - 87"999)

- %(1)(0 +0—2r)

= -7
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Continuing,

e =

1

Il =Ty =-
rf or r
Y =0

Since we have two coordinates e, and ey, the geodesic equations are:

@—FFG ﬁﬁ_f_ 0 ﬁﬂ
ds? "0 ds ds " ds ds
d*0  2drde
a2 v is ds

o, dodr
ds? % dsds
d*r dé
(=0 97
d52 T'( ds) ( )
It can be shown that the solutions to the above two coupled differential
equations is,

r=asec(0+0) (98)

where a and b are constants. These are equations of a straight line confirm-
ing that the geodesics on flat space are straight lines. The shortest distance
between two points in flat space is a straight line.

Definition of Geodesic [J]
A geodesic is a curve P()) that parallel-transports its tangent vector u =
dP/d\ along itself —

Vau=20 (99)
Notation

Note the new notation. This is equavalent to:

TV, T° =0 (100)

where T is the tangent vector u. We will use both notations. Also the
notation for the covariant derivative of v in the direction u (or the vector V°
in the direction of the tangent vector U?) is

Vav = UV, Ve (101)

We will introduce even more notation later.
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Geodesic from the Calculus of Variations

From [5]:

Theorem The integral ff F(x,y,y")dz, whose end points are fixed, is sta-
tionary for weak variations if y satisfies the differential equation

oF d [(OF
s () ¢ e
where
,_dy
- 7 1
V= (103)
Also 4],

Theorem The integral fab F(z,y")dz, whose end points are fixed, is station-
ary for weak variations if y satisfies the differential equation

oF
where c¢ is an arbitrary constant.
Geodesics on a Sphere For a sphere,
ds?® = daz® 4+ dy? + dz? = a%db? + a® sin® 0d¢? (105)

where a is the radius.
So we are required to minimize the integral (note we are integrating over

0),
Ia/B\/1+(d¢)sin20d0 (106)
T a4 do

From the theorem, F'(6, %) =,/14+ (%) sin?# is a function of # and %

which leads to
0 | d
@ 1+ (d—z)sin%’ = constant (107)

4% sin% ¢
— b —sina (108)
1+ (%) sin? @
Solving for % and integrating we get
sin adf
p+b / sin f(sin  — sin? o) 2 (109)
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On substituting § = tan=!(1/u) in the integral on the right-hand side it

reduces to
_/ tan adu 1 (110)
(1 —u2tan® )2

We can now integrate to obtain,

tan o
cos = 111
(6+8) = s (111)
which, on transformation into Cartesian coordinates, gives us
zcosfB —ysinf = ztana (112)

This is the equation of a plane through the center of the sphere.
"Thus the geodesics on a sphere are obtained as the intersection of the
sphere and a plane through its center, and so must be arcs of great circles[5].”

More Notations for Covariant Derivative of Vector

ugp = u + Igu” (113)
Where
0
Thus, ”;” emphasizes that corrections for ”twist and turns” need to be taken

into account when performing differentation.
Note in that in Cartesian Orthogonal Coordinate systems, I'S3=0 and

ulp = u (115)
Differential Equation for Geodesic from Definition:
Vau=20 (116)

Note that u is a tangent vector along a curve P(\) which will turn out to
be the Geodesic. Thus,

dz®
= — 11
u=— (117)
uu® = (u% + T2u")u” =0 (118)
iB B VB
o [(dx™\ dz” dz dz?
o 7 = 11
8a:5<d)\>d>\+”5d/\ I (119)
d?zt o dzY daP
oz ey =0 (120)
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5 1-Forms and Connection Coefficients

1-Forms Reviewed

See [3] for details. Consider again a scalar function ¢(z,y, z). Then the gradient

1S:
0%, 06, 0
Vo= gait gt 5ok (121)

In terms of the basis vectors e;,

_ 08, 9%, , 09
V¢ = 8.1361 + ayez + 8263 (122)
Or,
_ 99
Now the differential of the scalar function ¢(z,vy, 2) or ¢(x?) is:
9¢ 9¢ 99
d¢ = —dz + —dy + —d 124
¢ Ox x+8y y+8zz (124)
_ 99
do = I dx (125)
Define, ' '
w' = dx" (126)
Then,
_ 99
do =w' 25 (127)

Just as e; are the basis coordinates, w® can also be viewed as basis coordi-
nates in a dual space.
Now lets generalize. Define a dual vector,

U; =w'l; (128)

Note that the vector Uj uses lower index as apposed to V! = V'e;. Now,
U, Vi =y vt (129)
which is a Real number. 1-forms map vectors into real numbers. This implies,
w'ej = 8! (130)

Lets analyze this equation (130). As we noted w® = dx’. So w' are the
differences along the basis e; for each z?. So e; pierces planes of constant x'
where each difference between planes is related to w'. So w'e! pierces only one
plane (count one) by definition and e! does not pierce w? and w? or constant
planes in the direction of e; and es. See Figure
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w1

Constant x3

/

Figure 8: Basis vectors and 1-forms

Mathematical definition of 1-form: a I-form is a linear, real valued func-
tion of vectors. Define the operation <, > where we plug in a dual vector u*

and vector v then
<u*,v> (131)

yields a real number.
A single physical quantity can be described equally well by a vector u or
by the corresponding 1-form u*.

Box 2.3 on Differentials from Gravitation [3]:

The ”exterior drivative” or "gradient” df of a function f is a
more rigorous version of the elementary concept of ”differential.”

In elementary textbooks, one is presented with the differential
df as representing ”an infinitesimal change in the function f(P)”
associated with some infinitesimal displacement of the point P; but
one will recall that the displacement of P is left arbitrary, albeit
infinitesimal. Thus df represents a change in f in some unspecified
direction.

But this is precisely what the exterior derivative d f represents.
Choose a particular, infinitesimally long displacement v of the point
P. Let the displacement vector v pierce df to give the number
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< df,v >= 0y f. That number is the change of f in going from
the tail of v to its tip. Thus df, before it has been pierced to give
a number, represents the change in f in an unspecified direction.
The act of piercing df with v is the act of making explicit the
direction in which change is to be measured. The only failing of
the textbook presentation, then, was its suggestion that df was a
scalar or a number; the explicit recognition of the need for specifying
a direction v to reduce df to a number < df,v > shows that in
fact df is a 1-form, the gradient of f.

Connection Coefficients The following is from Gravitation [3].

To work with components, one needs a set of basis vectors (e, )
and the dual set of basis 1-forms {w®}. In flat spacetime a single
such basis suffices; all events can use the same Lorentz basis. Not so
in curved spacetime! There each event has its own tangent space,
and each tangent space requires a basis of its own. As one travels
from event to event, comparing their bases via parallel transport,
one sees the basis twist and turn. They must do so. In no other
way can they accomidate themselves to the curvature of spacetime.
Bases at points Py and P;, which are the same when compared
by parallel transport along one curve, must differ when compared
along another curve.

To quantify the twisting and turning of a ”field” of basis vectors
{ea(P)} and forms {w®(P)}, use the covariant derivative. Examine
the changes in vector fields along a basis vector eg, abbreviating

Ve, =Vpg  (definition of Vg); (132)

and especially examine the rate of change of some basis vector:
Vge,. This rate of change is itself a vector, so it can be expanded
in terms of the basis:

Vseo = e, 5 (133)

Note reversal of order of o and 3!
and the resultant ”connection coefficients” FZB can be calcu-
lated by projection on the basis 1-forms:

<wy,Veq >=T%, (134)

Because the basis 1-forms are ”locked into” the basis vectors
(< wh e, >=62), these same connection coefficients Fgﬁ tell how
the 1-form basis changes from point to point:

Vpwh = —T' s, (135)
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< Vawh, ey >= —Fgﬁ, (136)

6 Curvature

Commutators

In the following u = 0, and v = 0,,. Other equivalent notation: u = V,. So
they all represent covariant derivative along the direction u or v.
From Gravitation [3]:

At each point P a vector field u provides a vector u(P) —which
is a differential operator Jy(py — at each point P in some region of
spacetime. This vector field operates on a function f to produce
not just a number, but another function u[f] = dy. A second order
vector field v can perfectly well operate on this new function, to
produce yet another function

v{u[f]} = 0v(Ouf) (137)
Does this function agree with the result of applying v first and
then u? Equivalently, does the ”commutator”

[, v][f] = u{v[f]} = v{u[f]} (138)
vanish? The simplest special case is when u and v are basis vectors

of a coordinate system, u = 9/902%,v = 9/0z". Then the commu-
tator does vanish, because partial derivatives always commute:

[0/02%,0/02°[f] = 0> f)0xP0x® — B f /020" =0 (139)

But in general the commutator is nonzero, as one sees from a
coordinate-based calculation:

DO (4 F N a0 (4
[ vlf =t 5a (ﬂaxa) ~ " e (“%ra)
= | (u®0? — 2P 8}
o (AT ETA T P

Notice however, that the commutator [u, v], like u and v them-
selves, is a vector field., i.e., a linear differential operator at each
point event:

0

[u,v] = (] = v[u’]) 55 = (

uv?, — vl ) —. (141)

NeY
Recall the notation:

fa=0f/0x" (142)
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Figure 9: Commutators

Relative Acceleration of Neighboring Geodesics

From Gravitation [3]:

Take two vector fields. Combine into one the two diagrams for
Vuv and Vyu. See Figure Thereby discover that V,v — Vyu
is the vector by which the v — u — v — u quadrilateral fails to close
—i.e. it is the commutator [u, v] : Vyv — Vyu = [u, v].

Curvature Operator
In Figure the vector A is parallel transported around a closed curve. The

change in the vector as it completes the transport around the closed curve is

0A. In the diagram note the u = % =Vyand v = % = V, are operators

that act on the vector giving the covariant derivative in the respective directions
(change in vector compared to parallel transport along path).
First change in parallel transport in u direction.

01 = VyAAa (143)
Second change in transporting in v direction,

52 = Vy61Ab = V. Vy AAaAb (144)
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Vy-Vu =[u,v]

v(A0)

Figure 10: Commutators Illustrated

Now transport A in direction of commutator,

53 = V[VM]AAaAb

Transport along v in reverse direction,

04 = -V, AAD

Transport along u in reverse direction,

05 = —Vy04AbAa = -V V,AAaAD

This closes the curve. Now add up,

—0A = {Vqu —VVau+ V[VM]}AAQAI)

Define the curvature operator,

Finally,

R(u,v) = [Vu, Vy] = Viuy

—0A
AaAb

R(u,v)A

Rj., s = Riemann(w®, es, e,,e5) =< w”, R(e,,es)es >
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For component basis {e,} = §/0z“

ore;  org

(e} /B (e} «
Ri,s = 520 = 55 + T Ths = TisTh, (152)
% [v,ulAalb
-vAb
vAb

A

after transport

A

before transport

oA

Figure 11: Closed Curve Parallel Transport

-V.V, AAb Aa
- VVAA:/'UA%@ Viv,u] Abalb

VVVUAAaAb

A

after transport

A

before transport
0A

Figure 12: Closed Curve Details Showing Changes per Leg

The arrow §P in Figure [[4] measures the second derivative:

. o 1... _ MR-M,B BR
(first derivative at A + iA)\) =Vn = AAn - ANAn (153)
, o 1 o M,Q-M,A  —AQ
(first derivative at A — iA)\) =Vpn = AAn ~ AAn (154)
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Figure 13: One Parameter Family of Geodesics

Transpose to common location A, take difference, and divide it by A\ to obtain
the second covariant derivative with respect to the vector u; thus

(Vu),\+%A,\ - (Vu)k%m\
VauVun = AN
_ (BR + AQ)vectors transported to common location _ 5P (155)
(AN)2An (AN)2An

Which equals the "relative acceleration vector” for neighboring geodesics.

Equation of Geodesic Deviation

The equation of geodesic deviation is:

VuVan + R(n,u)u =0 (156)
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which states that the change of a vector as a result of parallel transport around
the loop u and n is equal to the change due to geodesic acceleration V,Vyn.
Refer to Box 11.6 in Gravitation [3].

n+An

Figure 14: Geodesic Deviation

Derivation of the Equation of Geodesic Deviation Now lets derive the
equation of geodesic deviation directly by computing V,,Vyn. See Wald [12].
Denote the tangent u by the vector U¢. Also denote the vector for n as N¢.

VuVuan = UV (U°V,N%)

= U°V.(N’V,U?)

= (U°V.N*)(V,U?) + N°U°V .V, U"

= (N°V.U®) (VU + N°U°V, V. U® — R N°U°U*?

= N°V.(U'V,U") — Ry N'UU?

= —R%,N°U°U? (157)
In deriving the above equation we note that since U¢ and N? are coordinate
basis they commute. That is UV,N® = N°v,Ue.

Noting that,
R(n,u) = [Vn, V] = Vinu (158)
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and
V[n,u] =0 (159)

since u and n are coordinate basis vectors and commute.

o 0 BE 02
Vnll = Vun = {%’ ax} = Gnox oo 0 (160)
Then
[Vy, VU = RY, U (161)
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7 Special Theory of Relativity

7.1 Spacetime

One of the postulates of the special theory of relativity is that in all inertial
frames regardless of uniform velocity with respect to other frames the speed of
light is constant. A photon travels at the speed of ¢ = 3 x 108 m/s regardless
of the speed of the object in vacuum. In three dimensions the following holds
true for a photon as it travels from the origin at time 0:

AP =2 fy? + 22 (162)
Or at any location,
A (dt)? = (dz)* + (dy)* + (dz)? (163)
Let us select units such that ¢ = 1. Define ds such that,
(ds)* = —(dt)? + (dz)? + (dy)* + (dz)? (164)
Let us define 2# = [t,x,y, 2] = [2°, 2%, 2%, 23] = [2°, 2] where i = 1,2, 3 refers

to space coordinates (Latin indexes). When we use Greek symbols for the index
we refer to spacetime coordinates. We can write,

(ds)? = —(dz®)? + (dz')? + (dx?)? + (da®)? (165)

For a particle moving at the speed of light, ds = 0. For particles moving at
less than the speed of light, (ds)? < 0. We refer to these particles as moving
in timelike manner. If a particle moves faster than the speed of light then
(ds)? > 0. These are spacelike particles. If we treat (ds)? as a metric then we

have,
(ds)* = dz“dx’na.p (166)

The metric 74 is a (0,2) tensor. In matrix notation,

~1.0 0 0
0 100

TE=1 0 010 (167)
0 00 1

The key point is that (ds)? is an invariant in any coordinate system. So let
us consider a barred coordinate system, z*. Then,

(ds)? = dz®dz"nap (168)

Let,
= Ao’ (169)

Where Aﬁ is a (1,1) tensor. It is a 4 x 4 matrix. Then,

(ds)? = Midz®ny, N)dz” (170)
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Whence,
Nap = Moy A (171)

The matrices A¥ that satisfy (171) are known as the Lorentz transforma-
tions. The metric (167) is called Lorentzian.
The inverse metric n*? is defined by:

"7#777;"/ =4 (172)

It has identical components to 7,,. Let

at = NgzP (173)
Then we can show that -
AGAD =6t (174)
We can lower indices,
A, =nu,AY (175)

Consider a boost in which coordinates are changed to a frame that travels
at a constant velocity. Let both coordinate systems coincide at t=0. Further

let the boost be in the z! direction with no velocity in z? and 23. That is,
2

72 =22, 2 = 23. Then,
70 = A02% + N2t (176)
=220 + A2t (177)
Where,

A A 0 0

o | A A 000
AG 0 0 1 0 (178)

0 0 01

From the orthogonality relationship (167)

-1 = —(A)*+(A)°
= —(A)*+(\)?
0 = =ADJ+AN (179)

Close examination of (179) and comparison with the relationship between hy-
perbolic functions leads to:

Ay = cosh¢
A = —sinh¢
Ay = —sinh¢
M = cosh¢

(180)
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cosh¢ —sinh¢y 0 O
o —sinh¢ cosh¢ 0 O
Aj = 0 0 10 (181)
0 0 0 1
#° = 2%cosh¢ — z'sinh ¢
' = —2%sinh ¢ + 2! cosh (182)
t = tcoshg— zsinh¢
Z = —tsinh¢+ xcoshg (183)
The point defined by & = 0 is moving with velocity v.
xz  sinh¢
Y t  cosho anh ¢ (184)
Replace ¢ with tanh™! v in 1i to obtain,
t = ~(t—vx)
z = y(xz—ot) (185)

where v = 1/v1 — v2.

Theorem Lorentz Contraction [I3] Let L be a rod fixed in an O coordi-
nate system and in uniform rectilinear motion in relation to an O system. The
length measurement of L is shorter when determined from the viewpoint of the
O system than it is when determined by O measurements. In particular,

EO =V 1-— ’UQEO (186)

Theorem Time Dilation [I3] Let I be a time interval associated with an
O coordinate system, which is in uniform rectilinear motion with respect to an
O system. The O determination of this time interval is then less than the O

measurement. We have B -
Iy =v1—1v2%15 (187)

Given two 4-vectors A* and B?, then the inner product is:
Atn,, BY = A'B,, (188)

A non-zero 4- vector A* is called spacelike if A*A,, > 0, timelike if A*A,, <0,
and null if A*A4, =0.
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7.2 World-Lines and Proper Time

This section draws on [I1]. Let *()) be a parameterized curve in Minkowski
space with parameter A defined over an interval a > A < b. Also assume that
in the interval z# is timelike. Define the tangent 4-vector to the curve at
an event p to be:
dz*
d\
Note that the tangent vector U* is independent of the choice of orthonormal
basis e,,. The path of a material particle will be assumed to be timelike at all
events through which it passes. This path is referred to as the particle’s world-
line. This assumption amounts to the requirement that the particle’s velocity
is always less than c.

U =U"e, where U" = [A=xo (189)

i s 3 :Ei
040, = SN _ (Z(d (“>2—1> <0 (90)

In the above, t = 2° = ¢()\). Hence,

v? = Z(dﬂ(t)f <1 (191)

In conventional dimensions, this means that v? < ¢2. For two neighboring
events on the world-line, z#(\) and z*(A + AX), set

AT = —As? = —p,, Azt Az” >0, (192)

where,
Azt = Azt (A + AX) — AzH()) (193)
In the limit A\ — 0

dzt(N) dx¥ ()
dA dA

(AN? =~ = D(GRAN? (194)

A% Ny

Hence

1
AT = V1 —02At = ;At (195)

Note that A7 is time dilated with respect to t. Hence, 7 is the time as
measured by a clock moving with the particle in the world-line. Measure the

length from p to ¢: ,
q q
Tpg = / dr = / d (196)
p tp Y

From [I1]:
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Define 7 as the proper time from p to ¢. If the event p is fixed
and we let g vary along the curve then the proper time can be used
as a parameter along the curve,

bdt
g

T =

(%) (197)

tp

The tangent 4-vector V' = Ve, calculated with respect to this
special parameter is called the 4-velocity of the particle,

dx# dz#
=S o 198
dr ~ at (198)

Form the inner product,
VIV, = (-14+0°)y* = —(1 =)y = -1 (199)

Thus, the magnitude of the 4-velocity is a constant and is invariant under
coordinate transformation.
Define the 4-acceleration of a particle as A = A*e,, with components

ave  d2azh(r)

A= — = ———= 200
dr dr? (200)
The components expressed in terms of the time parameter t are
dy dy dv
Al = —, — — 201
’Y(dt’ dtv+7dt) (201)
where X
dat
= —e; 202
A gt dt €4 ( )

The 4-velocity and 4-acceleration are orthogonal.
This is consequence of ((199). If we take the derivative of (199|)with respect
to proper time we get,

V“VM =-1
d(VFV,)/dr =0
dV,
QUHH —
1% = 0
V“A“ =0 (203)

7.3 Energy and Momentum
Let the particle’s rest mass be m = mg. Define the 4-momentum

p =mVH (204)
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Now,

Py = —m? (205)

So the length of the 4-momentum vector is an invariant. For example under a
boost, p*p,, = —m?. Consider a boost in the x direction. Then,

p* = (ym,vym,0,0) (206)

For small v we have p° = m + %mvz. Thus, define E = p° as the energy. If
we re-introduce ¢, we have,

1
E =mc* + va2 (207)

Hence, the energy of the moving particle has increased by %mv2 the Kinetic
energy. Note that the total energy includes the rest mass energy. Thus, E =
mc? for a particle at rest. Although we will not insist on this but we can also
think that the mass of the moving particle has increased by the Kinetic energy.
We would like to keep the rest mass as the invariant always refering to m.

Since we have associated p® with Energy, then for PPy = —m? we have

E? =m? + p? (208)

where p? = &/ pipl.

Definition The quantity,

m
= o

is called the inertial mass (mg is the rest mass).

The above definition shows that there is a limit to the maximum speed of
a particle with mass. The photon which travels at the speed of light has zero
rest mass.

Definition Lorentz contraction factor for volume is (1 — v2)~2.

8 Energy Momentum Stress Tensor

Divergence Theorem

Let F(z,y,2) = Fy(x,y, 2)i + Fy(x,y, 2)j + F.(x,y, 2)k be an arbitrary vector
function. For example, in a fluid the velocity u(z,y, z) is a vector function.
See Figure where the surface S completely encloses the volume V. Then
the divergence theorem states that,

//SF-ﬁdSZ//VV~FdV (210)
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where,
aFac(z7yvz) + 8Fy(x,y,z) _|_ an(xvyaZ)

.F =
v Or oy 0z

(211)

and 9
V=—i+—j+ =] (212)
T Y

Continuity Equation
See [I0] for details. In Figure [15|the volume V' at any time ¢ contains

///V p(z,y, z,t)dV (213)

amount of matter. In the above p(z,y, z.dt) is the density of stuff at a given
location at time ¢t. The rate at which the stuff in the volume is changing is,

e [ff oo

Now lets compute the rate at which stuff enters and leaves (flows through)

the surface S.
// pv - 1dS (215)
S

where v is the velocity of the flowing stuff and f is the unit normal to the
surface at position x,y, z. We assert that the rate at which the amount of stuff
in V is changing is equal to the rate at which the stuff is flowing through the
surface S that encloses V' [10] . Thus,

/// apdV——//Spv-ﬁdV (216)

Apply the divergence theorem (210):

//S pv -ndS = ///VV - (pv)dV (217)
/// 9P gy — _ ///VV~(pv)dV (218)

From which we arrive at the continuity equation,

9 _
ot

Hence,

V- (pv) (219)
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Figure 15: Divergence

Figure 17: Flow Oblique
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8.1 Stress Tensor and Fluid Dynamics in Three
Dimensional Space

In the following we will review the stress tensor for fluid dynamics in non-
relativistic settings. This work is based on Batchelor [I]. We will add some
clarifications to the material as needed. There are two kinds of forces acting
on matter in bulk. The first group are long-range forces like gravity. Such
forces are capable of penetrating into the interior of the fluid. They act on
all elements of the fluid. ” A consequence of the slow variation of one of these
long-range forces with position of the element of fluid which it is acting is that
the force acts equally on all the matter within a small element of the volume
and the total force is proportional to the size of the volume element. Long
range forces may thus also be called volume or body forces[I].”

Consider an element of volume 0V surrounding the point whose position
vector is x!. We are interested in the total force acting on the element:

Fi = f(x',t)pdV (220)

where, f(x%,t) is the force per unit of mass. The mass density is p which is
also a function of position in general. For a graviational field near the Earth’s
surface for example, F = g which again has the units of force per unit mass.
The second group of forces are the short-range forces. According to Batchelor

[1:

If an element of mass of fluid is acted on by the short-range forces
arising from reactions with matter (either solid or fluid) outside
this element, these short-range forces can act only on a thin layer
adjacent to the boundry of the fluid element, of thickness equal
to the 'penetration’ depth of the forces. The total of the short-
range forces acting on the element is thus determined by the total
surface area of the element, and the volume of the element is not
directly relavent. The different parts of a closed surface bounding
an element of fluid have different orientations, so that it is not
useful to specify the short-range forces by their total effect on a
finite volume element of fluid; instead we consider a plane surface
element in the fluid and specify the local short-range force as the
total force exerted on the fluid on one side of the element by the
fluid on the other side. Provided the penetration depth of the short-
range forces is small compared with the linear dimensions of the
plane surface element, this total force exerted across the element
will be proportional to the area dA and its value at time ¢ for an
element at position x’ can be written as the vector

T(n,x', 1) A, (221)

where n is the unit normal to the element. The convention to be
adopted here is that T is the stress exerted by the fluid on the side
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of the surface element to which n points, on the fluid on the side
which n points away from; so a normal component of T with the
same sense as n represents a tension.

The force per unit area, T is called the local stress. The way in
which it depends on n is determined below. The force exerted across
the surface element on the fluid on the side to which n points is of
course —T(n,x%,t)§A, and since this is also the force represented
by T(—n,x% t)§A we see that T must be an odd function of n.

8.2 Representation of Surface Forces by the Stress
Tensor

In the following Batchelor [I] derives the relationship for the stress tensor:

Some information about the stress T may be deduced from its
definition as a force per unit area and the law of motion for an
element of mass of the fluid. First we determine the dependence
of T on the direction of the normal to the surface element across
which it acts.

Consider all the forces acting instantaneously on the fluid within
an element of volume dV in the shape of a tetrahedron as shown in
figure . The three orthogonal faces have areas dA;,5As, 0 A3,
and unit (outward) normals —a, —b, —c, and the fourth inclined
face has area A and unit normal n. Surface forces will act on the
fluid in the tetrhedron across each of the four faces, and their sum
is

T(n)dA + T(~a)dA; + T(—b)iAs + T(—c)dAs; (222)

the dependence of T on x’ and t is not displayed here, because
these variables have the same values (approximately, in the case of
x*) for all four contributions. In view of the orthogonality of three
of the faces, three relations like

0A; = a-ndA (223)

are available, and the i-component of the sum of the surface forces
can therefore be written as

Now the total body force on the fluid within the tetrahedron is
proportional to the volume 6V, which is of smaller order than § A in
the linear dimensions of the tetrahedron. The mass of the fluid in
the tetrahedron is also of order 6V, and so too is the product of the
mass and the acceleration of the fluid in the tetrahedron, provided
that both the local density and acceleration are finite. Thus if the
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linear dimensions of the tetrahedron are made to approach zero
without change of its shape, the first two terms of the equation

mass X acceleration = resultant of body forces + resultant of surface forces
(225)

approach zero as §V, whereas the third term apparently approaches

zero only as JA. In these circumstances the equation can be satis-

fied only if the coefficient of J A in vanishes identically (with

the implication that information about the resultant surface force

on the element requires a higher degree of approximation which

takes account of the difference between the values of T at different

positions on the surface element), giving

T;(n) = {a;Ti(a) + b;T;(b) + ¢;Ti(c)}n; (226)

Cc

a

Figure 18: A volume element in the shape of a tetrahedron with three orthog-
onal faces

Thus the component of stress in a given direction represented
by the suffix ¢ across a plane surface element with an arbitrary
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orientation specified by the unit normal n is related to the same
component of stress across any three orthogonal plane surface ele-
ments at the same position in the fluid in the same way as if it were
a vector with orthogonol components T;(a), T;(b), T;(c).

The vectors n and T do not depend in any way on the choice
of the axes of reference, and the expression within curly brackets
in must represent the (7, j)-component of a quantity which
is similarly independent of the axes. In other words the expression
within the curly brackets is one component of a second-order tensor,
Ti; say, and

Tz(n) = TijNnj. (227)

Ti; is the i-component of the force per unit area exerted across a
plane surface element normal to the j-direction, at position x’ in
the fluid and at time ¢, and the tensor of which it is the general
component is called the stress temsor. Specification of the local
stress in the fluid is now provided by 7;;, which is independent of
n, in place of T(n).

At this point it is instructive to illustrate the components of the stress
tensor, 7;;. In Figure [19a cubic volume element is shown. Let T} denotes the
stress over 65y with kK = 1,2,3. For each face k we can decompose the stress
as:

Ty = Tr1€1 + Tra€2 + Ti3€3 (228)

where 7; represents the jth component (7 = 1,2, 3) of the stress over the face
0Sk. In [8], it is shown that the quantities 7;,(j = 1,2, 3;k = 1,2, 3) constitute
the components of an affine tensor of rank 2. The adjective affine is used
in order to emphasize that the coordinate transformation referred to in this
definition is an orthogonal one. Thus, for an affine transformation,

3

_ oxd 0xk
Tik = Z Dk ol T (229)
h=11=1
and s s
or? dxk
Tjk = Z W@Thl (230)
h=1 =1

8.3 Symmetry of the Stress Tensor

In this section based on the development by Batchelor [I] it is shown that the
tensor 7 is symmetric.

A similar argument can be used to demonstrate that the nine
components of the stress tensor are not all independent. This time
we consider the moments of the various forces acting on the fluid
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Figure 20: The surface forces acting on a rectangular element of fluid of unit
depth
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within a volume V of arbitrary shape. The i-component of the
total moment, about a point O within this volume, exerted by the
surface forces at the boundary of the volume is

/eijkrokmldA, (231)

where r is the position vector of the surface element ndA relative
to O. This integral over a closed surface can be transformed by the
divergence theorem to the volume integral

a(r; 9
/e;‘jk(gﬂig’d)d\/: /Gijk(Tkj —l—rja%kll)d‘/ (232)

If now the volume V is reduced to zero in such a way that the
configuration made up of the boundary of the volume and the fixed
point O retains the same shape, the first term on the right-hand side
of becomes small as V' whereas the second term approaches

. 4
zero more quickly as V3.

To expand on this statement, if we consider a volume element that is a small
sphere with radius r and volume dV then r is of the order dV3. Then a
term involving moments in the volume element such as rdV is of the order of
dVidV = dVi. Continuing with [1]:

The total moment about O exerted on the fluid element by
the body forces is clearly of the order V5 when V is small, and
so too is the rate of change of the angular momentum of the fluid
instantaneously in V. Thus [ €;;,7,;dV is apparently of larger order
in V than all the other terms in the moment equation, and as
a consequence it must be identically zero. This is possible for all
choices of the position O and the shape of V', when 7;; is continuous
in x, only if

€ijkThj = 0 (233)

everywhere in the fluid; for if €;;,7%; were non-zero in some region
of the fluid, we should be able to choose a small volume V for which
the integral is non-zero, giving a contradiction. The relation
shows that the stress tensor is symmetrical, that is, 7;; = 7;; and
has only six independent components.

The following should assist in further understanding the meaning of the
components of the stress tensor [I]:

The three diagonal components of 7;; are normal stresses in
the sense that each of them gives the normal component of surface
force acting across a plane surface element parallel to one of the
co-ordinate planes. The six non-diagonal components of 7;; are
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tangential stresses, sometimes also called shearing stresses, since
in both fluids and solids they are setup by a shearing motion or
displacement in which parallel layers of matter slide realtive to each
other. Figure shows the first approximation to the various
surface forces acting in the (x1,x9)-plane on a small rectangular
element with sides dz; and dxo and unit depth in the x3 direction;
the components of the stress do not exactly the same values on
opposite sides of the rectangle, and the differences of order §z; and
dxo, will need to be taken into account when the equation of motion
of an element of fluid is formulated.

8.4 Differentiation Following the Motion of Fluid

For steady flow, the change in velocity of a material element is (note that the
material element moves to dtu),

u(x + udt, t + 6t) — u(x,t) (234)

Noting that the Taylor series expansion for a function of two variables is f(z +
Az,y + Ay) = f(z,y) + Ax% + Ayg—i + ---. For vectors, f(x + Ax) =
f(x)+ Ax - Vf(x)+ -+ we can write,

u(x + udt, t + 0t) — u(x,t) = (5t%—1; + (§tu) - Vu + O(6t%) (235)

From which we can introduce the notation,

D 0
— == . 236
Dt otV (236)
The acceleration of a fluid element can be written %
Recall the conservation of mass equation:
0
a—’t’ LV (pu) =0 (237)

expanding the divergence term V - (pu) = p(Vu) + u - Vp, we can write,

1 Dp

Interpretation of V-u. The volume V of a material body of fluid changes as
a result of the movement of each element ndS of the bounding material surface.

Thus,
%:/u-ndS:/V~udV (239)
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where we have used the divergence theorem. From [I], ”the rate at which the
volume of a material element instantaneously enclosing the point x is changing,
divided by the volume is,”

.1
This fractional rate of change of the volume of a material element is called the
(local)rate of expansion or rate of dilation [I].

Fluid Equation of Motion

Consider the body of fluid with volume V enclosed by surface S.The momentum
is [updV. Force is the rate of change of momentum. So the rate of change of
momentum is:

Du

2 hdV 241

TP (241)
which can be interpreted as the sum of the products of mass and acceleration
through out the elements of the material volume V. This force is equal to
the sum of the body forces and the surface or contact forces, see (225). First

consider the body force.
F = / fpdV (242)

The surface force on the area S with normal n has a component in the 4
direction 7;;1;65 where the summation over j is implied. The ith component
of this force over the area S enclosing the volume V is,

/ T, dS = / g;j v (243)

where we have used the divergence theorem. Writing down equation(225|),

Du; 0Ty
LpdV = [ £pdV 2 qv 244
Dt / pdV + / 7z, (244)
The integral relation holds for all choices of the material volume V. So
that,
Dui _ aTij
Dt plit Oxd
This is the equation of motion and holds at all points in the fluid. In vector
form,

p (245)

D
p?ltl:pf-i-v-T (246)
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Fluid at Rest
For a fluid at rest p% =0 or,

pf=-V.T (247)
Consider that the only force acting on the fluid volume is gravity. Then f = g
and,

V-T=-pg (248)

For a fluid at rest the tensor T is diagonal as the shear forces arise due to
fluid motion. Let, T = —pd;;. In this case,

dp
- 249
9wy~ P9 (249)
where (z,yz) corresponds to (z!, 2%, x3).Thus,
D = po + pgz (250)

assuming that p is independent of z. For the fluid at rest in this case p is the
pressure.

8.5 Stress Tensor

For a fluid at rest only normal stresses are exerted and the normal stress is
independent of the direction of the normal to the surface element across which
it acts. In this case,

Tij = —Dbi; (251)

For a fluid in motion we can expect,
Tij = —Pdij + dij (252)

where the terms d;; = 0 for a fluid at rest. Also p in( is not the pressure
except for the case when the fluid is at rest. The non-isotropic part d;; is
termed the deviatic stress tensor and is entirely due to the existance of motion
in the fluid.

For a fluid in motion it is expected that the velocity component u; changes
for an incremental increase in the direction z7 about a point. ” The hypothesis
is made that d;; is approximately a linear function of the various components
of the velocity gradient for sufficiently small magnitudes of those components.
Analytically the hypothesis is expressed as [1],

8uk
ikl T
where the fourth-order tensor coefficient A;;1; depends on the local state of the

fluid, but not directly on the velocity distribution, and is necessarily symmet-
rical in the indices 7 and j like d;;.”

dij=A (253)
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To make a long story short the deviatoric stress tensor expression is [1]:

1
dij = 2M(eij - gv . U.(;ij) (254)
where e;; is the symmetrical part of g%.

The constant p is the wiscosity of the fluid.

Navier-Stokes Equation
Writing down the total stress tensor,
1
Tij = —péij + 2,&(6@‘ — gv . u§ij) (255)

and substituting into the equation of motion (246]),

Du; dp 0 1
P =t g+ o 2wt = 3V ui) | (256)

This is called the Navier-Stokes equation of motion.

If we assume that appreciable differences in temperature do not exist for
the fluid (p depends significantly on temperature), then p is independent of
position. Then,

Du; dp 0%u; 10
=pfi — =— —— 4+ ——V - ud;; 257
"Dt pli Ox* o (%ﬂ Oz’ * 3920 U (257)
Recall the equation of conservation of mass,
1D
;FerV-u:O (258)

For an incompressible fluid, the mass conservation equation reduces to:

V-u=0 (259)

and we get,

D
p?‘t‘ = pf — Vp+ uViu (260)

Perfect Fluid
A perfect fluid is one for which d,; vanish identically. Thus, from (252))

V.-T=-Vp (261)

In this case (246 reduces to

plowv + (v-V)v] = =Vp (262)
where we have used the definition (236 . Also we assume no body force.
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Newtonian Fluid

For fluids which,
1
dij = 2#(31’3’ - gv . U(Sij) (263)

hold are called Newtonian fluids. For example, for a simple shearing motion,
and taking % as the one non-zero velocity derivative, all components of d;;
are zero except,

- (’)ul
BT
” 1 is the constant of proportionality between the rate of shear and the tangen-
tial force per unit area when plane layers of fluid slide over each other[I]”. It is

termed the wiscosity of the fluid. This relationship was proposed by Newton.

d12 = d21 (264)

8.6 Perfect Fluid in SpaceTime
According to [2]:

Dust may be defined in flat spacetime as a collection of particles
at rest with respect to each other. The four-velocity field U#(x)
is clearly going to be the constant four-velocity of the individual
particles. Indeed, its components will be the same at each point.
Define the number-flux four-vector to be

N, =nU, (265)

where n is the number density of the particles as measured in their
rest frame.

Now it is very important to take note of the invariant: ”in any frame, the
number density that would be measured if you were in the rest frame is a fixed
quantity” [2].

If each particle has the same mass m then in the rest frame the energy
density of the dust is given by

p=mn (266)
Define the energy-momentum tensor for dust:

Ty , = p'NY = mnUMU” = pUrU" (267)

For a perfect fluid, 7' = 722 = T3 and p = T°. Furthermore, the
pressure is p = T%. Note the pressure is equal in all directions. Also note that
in the rest frame p* = (m,0,0,0) and N* = (n,0,0,0). The energy-momentum
tensor of a perfect fluid takes the following form in its rest frame:
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™ = (268)

S o oOoT
o O O

oR o o

p

oo ©

Referring to [2] the general form o
perfect fluid is:

the energy-momentum tensor for a

™ = (p+p)U*U” + pn**” (269)

We refer to [2] for the ”somewhat arbitrary” way the equation is dervied but
we note that there is complete confidence in the result. In particluar, ”given
that should be the form of T*” in the rest frame, and that is a
perfectly tensorial expression that reduces to in the rest frame, we know
that must be the right expression in any frame.”

A property of the energy-moment tensor T#" is that it is conserved. This
is a huge property indeed. Thus,

8,T" =0 (270)

The expression is comprised of four equations one for each v. For v = 0 the
equations corresponds to the conservation of energy. The equations 8MT“’°, k=
1,2, 3 correspond to conservation of the kth component of momentum.

If we take the nonrelativistic limit, where for U* = (1, v%) we have |v?| << 1
and p << p where that last condition holds true since pressure comes about
from the random motions of individual particles and these motions are small,
then after some work [2] derives,

plowv + (v-V)v]=—-Vp (271)

from (270)) which is the Euler equation in fluid mechanics. This is the same
as we derived for the Perfect Fluid in (262)).
The above is also derived in [3] page 152.

9 Differential Forms

As we proceed, we will run into situations where formulation in terms of dif-
ferential forms will provide great insight into the problem. The introduction
given here is just enough to get an elementary understanding. We draw on
Gravitation [3] and Lovelock and Rund [§] . It turns out that differential forms
are also an alternative formulation in electromagnetics and offers better geo-
metrical insight into fields [9]. So it is worth the effort especially when we cover
Special Relativity and Electromagnetics. We have a full development in a later
chapter. Construct the sum,

w = Ajdz’ (272)
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This sum is a number. However, we can introduce the function dz/(.) that
assigns a vector its k*" coordinate. Thus for a vector A = (Ay,...A,), we have
dl‘k(A) = Ak.

We can introduce the function,

wy(a) = A (x)dzi(a) + ... + Ap(x)dz,(a) (273)

Hence w,(a) produces a number from the vector a. Think of the inner
product between two vectors. Where, in this case , the operation on the vector
by the 1-form produces the inner product. So the 1-form is like a machine in
which you plug in a vector and you get back a number.

Some examples from [14],

1. If a=(—2,0,4) then dzi(a) = —2,dzz(a) = 0,dzs(a) = 4.

2- If in R?, w, = W(a,y) = z2dx + y2dy, then Way)(a,b) = ax? + by? and
w(1,—3)(a,b) = a + 9b producing a number.

Let,
7 = Bjda’ (274)
Then,
w+ 7= (A; + Bj)da? (275)
which is a 1-form.
dy
dx >

/ ¢dz

Figure 21: Fundmental 1-forms in Cartesian Coordinates

Exterior Product (Wedge Product)

As pointed out in [14], when the product of two 1-forms w,n is considered, a
new concept must be introduced. Define the wedge product,

WAT=-—-TAw (276)

In particular,
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dy A dz

Figure 22: Fundmental 2-form dy A dz in Cartesian Coordinates

da? A da® = —da? A da® (277)
The exterior product of two 1-forms, w and 7 can be expressed as,
1 A . 1 .
WAT = E(AjBkd:z:J/\dszrAjBkdxj/\dwk) = i(AjkaAkBj)dxj/\dxk (278)
This new expression, noting the terms da’? Adz"*, is not a 1-form but a scalar
2-form. A general 2-form of this type is represented by expressions such as,
Ajdzd A da® (279)
Exterior Derivative of p-Forms Consider the 1-form: w
w = Az’ (280)

define the exterior derivative, denoted by dw:

dw = wdw A dax? (281)
which is a 2-form.
Using the fact that,
dwo = — 94 403  aut 282
w=—opde x (282)
We can combine to write,
1 (0Ar 0A; j &

This shows that ”the basis elements da’/ Ad2* with j < k are the components
of the ”curl” of the vector filed A4;.”[8].
The exterior derivative of the 2-form:

Ajpda? A dz" (284)
J
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is defined by:

_ 0Ajn 0Ajn

= k J h _ j h k
dw Dk dz® N dx? A dx Dk dz? Adx" Ndx (285)

In [8] the following is derived:
dwAn)=dwAT+ (—1)PwAdr (286)

which represents the ”product rule for the exterior derivative of the exterior
product of a p-form w with a g-form 7 [§].”
Consider the exterior derivative d(dw) of the 1-form,

o4

J gk j
dw = @dm‘ A da? (287)
Then,
d(dw) =0 (288)
by virtue of the symmetry of the second derivatives :
0% Ay, 0% A,

0r*dri 0oLk (289)

It is important to note that in 3-dimensional space, if dw is a one form the
relationship d(dw) = 0 corresponds to V x (Vf) = 0 from vector calculus. If
dw is a two form the relationship d(dw) = 0 corresponds to V - (VF) = 0.

10 Electromagnetics, Differential Forms and Special
Relativity

In the following we will use the invariance of the principal that there are no
single magnetic poles in the rest frame and in the moving frame to derive key
equations in Maxwell’s equations. See [3]. We also illustrate differential forms
in electromagnetics and derive two compact equations that encapsulate the
whole of Maxwell’s equations.

The Lorentz force in EM is:

d
di;’ — ¢(E+v x B) (290)
Define the 4-momentum:
P =%, p] (291)
Calculate,
dp 1 dp e 0
2 _ > ___ - (E B) = E B 292
ir - Vi dt m( +vxB)=e(w’E+uxB) (292)
dp = eF(u) (293)
dr

where u is the particles 4-velocity.
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Energy-Charge Law
dp® B 1 dE 1

dr \/1—1)2E— \/1—1)26

Note that eE - dx is the work done in moving by dx. Thus, eE‘é—f =cE- v
is the rate of change with only component in v direction contributing.

E-u (294)

O opeuf — 295
dr “rpt dr (295)
0 1 2 3
o/0 E, E, E.
« 1|E. 0o B -B,
Fs=9lE, -B. 0 B (296)
3\E. B, -B, 0
uw'E, + u2Ey +uiE, %
Eu’ 4+ B,u? — Bu® f
a, B __ T z y o T
Fgu” = By’ — Byu' + Byw? | — | f, (297)
EZUO + Byul - Bgcu2 Iz
Fap = napFg (298)
0 1 2 3
o/0 -E, -E, —E,
1l E;, O B, -B,
Foa = E, -B, 0 B, (299)
3\E. B, -B, 0

Recall that a boost of frame of reference by velocity parameter o in z — ¢
Plane

Velocity 8 = tanh « (300)
sinha = _p (301)
V1= 5
cosha = S (302)
JiopE |
ot = APFY (303)
B = Rt (304)

and in matrix notation:
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with

0 1 2 3
cosha 0 0 sinha
0 1 0 0
0 0 1 0
sinha 0 0 cosha
0 1 2 3
cosha 0 0 -—sinha
0 1 0 0
0 0 1 0

—sinha 0 0 cosha
AZAZ = 53

(305)

(306)

(307)

Since F},, is a tensor, relative to the Lorentz transformation, we have,

Fop = FWAQAE (308)
Let us write the above in matrix form with A = [|A%||, then
F=A"FA (309)
0 -E, —-E, —E,
_ E, 0 B, -B,
F= E, —B. 0 B, (310)
E, By, -B, 0
coshaa 0 0 —sinha 0 -E, —-E, —-E. cosh a
Fo 0 1 0 0 E, 0 B, -B, 0
0 0 1 0 E, —-B, 0 B, 0
—sinha 0 0 cosha E, B, -DB; 0 —sinh «
(311)
Multiplying through terms cancel out and we use cosh? a — sinh? o = 1 we
get,
0 —F cosha — Bysinha  —F, cosha + By sinha
F_ E;cosha + By 0 B,
- E, cosha — By sinha -B, 0
E, E, cosha + By E, cosha — B, sinh o
(312)
Writing out, ~ ~ ~
9 _Er __ y _Ez
= E, 0 B, -B,
F = Ev _ ,Bz 0 B, (313)
E, B, -B, 0
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0 —sinhao
0 0
1 0
0 cosha
E,
—Fy cosha — By
—Fy cosh o + By sinh o
0



Recalling that sinha = T and cosha = i

BZ
E, = \/11_752(& + BBy) (314)
_ 1
By = \/17—7,82(]% — BBy) (315)
E.=E. (316)
B, = ﬁ(—wy 1 B,) (317)
B, - wl_w(m +B,) (318)
B.=B. (319)

Now from z# = Afz"¥ we have,

t =tcosha — zsinh o

r=x
y=y
Z = —tsinha + z cosh « (320)

Since we are working with orthogonal coordinate transformations, for any
scalar function ¢ we have,

% — 2873_36@ (321)

oTH
20 _ 00 02 00 0
073 02003 023 0z3

Since 2 = sinh az® + cosh aZ? and 2° = cosh oz’ +sinh az> and letting t =
and z = 23, then

(322)

3 0

06 . 06 .. 09
55 = cosh ag- + sinh as, (323)
Let 8 << 1 then,
d 13 0
22 Pa (324)

Now comes the invariance of physical laws with Lorentz transformation. In

the rest frame,
0B, OB 0B
.B = d Y -0 325
v 5 "oy T o (325)

That is there is no free magnetic pole. Now this should also be true in the
moving frame,
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V-B= ox oy 0z =0
We have,
0 0 0
2: = 0: g
9_0
0 Oz
9_290
dy Oy

0B.  0B. O(-PE,+B;)  O(BE; +By)

5. o BE oy 0
9B. OE, OE,\ 0B. 0B, 0B,
5(875 633+8y)+82+8x+8y_0

0B. 0E, n 0E, 0
ot or dy

In a similar development for direction along x or y we obtain,

aB
e E_f
t+V>< 0

(326)

(327)

(328)

(329)

(330)

(331)

Equations (325 and (331)) together can be encapsulated in the following,

Fapny + Fpya+ Frap =0

(332)

with « = 1,8 = 2,7 = 3 etc. leadingto V-B=0and a=0,8=0,vy=0

leading to %—? + V x E = 0 whence,
dF =0

and
V-«sF=0

General 2-form Faraday F,

1
F = iFl“,dx“ A da”

Now take the exterior derivative of Faraday, using ¢, x,y, z for «#,

(0B, 0B, 0B,

dF(@x + By + 8Z)dx/\dy/\dz
0B,  0E, OE.
ot dy 0z

)dt/\dy/\dz
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n (83y n OE, OFE,
ot 0z ox

0B, O0E, OE,

( ot or Oy

)dt/\dz/\dx

)dt/\dx/\dy

Cleary since V - B = 0 and %—?—i—VXE:OthendF:O.
The Faraday is therefore a closed 2-form. Thus,

F=dA

(336)

(337)

where A is the 4-potential and ddA = 0. Since F = dA we can write,

04, 04,
RO g Qo

A= Aodt + AldCC + Agdy + A3dz
Definition of Dual of 2-form F,
F=FE,dxANdt+ E,dyAdt+..+ B, dxAdy

Dual,
*F = -B,dx Adt — ... + Eydz Ade + E.dz A dy

With this definition can also show that,
*xF =—-F

From Maxwell’s equations we have the electrostatic law,
V-E=4mp

and the electrodynamic equation,

a—EfoB:féhrJ
ot

Now define the ”4-current” J,

J% = p = charge density
(J', J?, J®) = components of current density

(338)

(339)

(340)

(341)

(342)

(343)

(344)

(345)

Then Maxwell’s electrostatic law and electrodynamic law can be encapsulated

in the 2-form expression,

d+«F =4nxJ

This can also be expressed as V - F = 47 J.

(346)

Thus all of Maxwell’s equations can be written using 2-forms in the following

two equations:

dF =0
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d+F = dmx] (347)

11 Differential Forms and Curvature

11.1 Preliminaries

The following is based on Flanders [4]. We will paraphrase and quote from
Flanders in the derivations to follow. Note that the wedge operator "A” is
implied and due consideration to the sign should be given.

We are familiar in rectangular coordinates with
dx = dxi+ dyj + dzk (348)
In orthogonal coordinates in general,

dx = o1€e1 + ogeg + 03€es (349)

For example in spherical coordinates,

dr = dpe, + pdfeg + psinfdpey (350)
Hence,
o1 = dpdp
oo = pdf
o3 = psinfdeo (351)

o is known as a one-form.
Now,
dei = w;1€e1 + wjzses + w;3zes (352)

This is a very important expression. It states that by moving an infinitesi-
mal amount the unit coordinate e; changes (magnitude and direction) and its
change depends on all unit coordinates weighted by differential factors.

Thus, w;; is also a 1-form.

Since e; - ex = d;x, taking the differential, we have,
dej-ex +e-dex =0 (353)
Substituting for the de; and de; we get,
Wik +wi; = 0,wy; =0 (354)

Introduce matrix notation,
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T
e=le; ez ej]

o=lo1 o2 03]

Q2 = [Jwi]l
Where € is a 3 x 3 matrix.
From d(dx) = 0 we have,
doe —ode =0
doe —of2e =0
(do —oQ)e=0

Since e; are linearly independent,

do =o€}
Similarly d(de) = 0. From which,

0 = dQe — Qde = (dQ2 — 0?) e

Or,
dQ = 0

Note that equation (354)) can be written as,

Q+Q" =0

11.2 Hypersurfaces

Note: This section is a prelude to Riemannian geometry.

From [4]:

Definition A hypersurface is an n-dimensional manifold M em-
bedded in E"*!. Denote a moving point on M by x . Our study
is local so we pick a definite unit normal n at each point x of M .
The map x— > n is a smooth map on M into S™.

The tangent space at x is an n-dimensional Euclidean Space; we
pick an orthonormal basis for it eq,---e, . Thus at x, the vectors
e1, - ey, n make up an orthonormal basis of E"T!. Since dx is in
the tangent space we have,
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(357)

(358)

(359)

(360)

(361)

(362)

(363)

(364)



dx = o1e1 + ogeq + o3€e3 (365)

where o1, - , 0, are one-forms on M.
From the relations,

€ -ex =0

e;g-n=20
n-n=1 (366)
we deduce
dej-ex+ej-dex =0
dej-n+e-dn=20
n-dn=0 (367)
and so
dei = Zwijej — w;n (368)

dn = Zwiei (369)

where w;; , w; are one-forms on M and
wij +wji =0 (370)
Note that dn lies in the tangent space (since ndn = 0). Thus,
dn = Zwiei (371)

In matrix form,

(372)

We also have,
dx = oe (373)
Q+0" =0 (374)

Lets take exterior derivatives. In what follows we will omit ”A”. Following
ZE

0 =d(dx) = (do)e — o(dde)
= (do)e — o(Qe — w'n)
=do—oQ)e+olwn
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(375)

with
do = o2 (376)
doTw =0 (377)
0=d|d ( ©
n
[ d2 —dwT e\ [ Q —wT d
T\ dw 0 n w 0

(2 4)(3)-(2 3

< dQ - + wTw —(dw)T + Q%Tw ) <

dQY — w2 0
(378)
dQ - +wTw=0 (379)
dw = w) (380)
We define a skew-symmetric matrix of two-forms,
© = ||6;;]| = dQ2 — Q2 (381)
Summary of results [4]:
do = o9 (382)
Q+” =0 (383)
oclw = 0 (384)
dv = w (385)
O+wlw =0 (386)

Suppose one has a function v = v(y, z,...) where v is always a tangent
vector to M.
"How does an observer constrained to M observe the motion of v?”[4]

Now,

v=Y e (387)
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¢; are functions.

dv

Z dec;e; + Z CZ(Z wij€; — win) (388)
> (dei+ ) ciwigle; — (D cwi)n (389)

where we have used de; = ) w;jej — w;n from ([368)).

From [4]

Our observer who is constrained to move in the hypersurface
M cannot "see” the motion of v which takes place in the direction
normal to M he sees only the tangential motion of v. Consequently
he believes v is motionless provided,

(dej + > ciwij)e; =0 (390)

That is ,
dej + ) ewi; =0 (j =1,...,n). (391)

A vector function for which these equations are valid is said to
move by parallel displacement

The following can be checked. If v = v(y,z,...) and w =
w(y, z,...) are two such vector-valued functions which are compat-
ible for each point (y,z,...) in the parameter space v and w are
tangent at the same point of M and each moves by parallel dis-
placement, then v - w is constant.

In particular, |v|? = v - v is constant.

Let P = P(s) be a curve on M parameterized by its arc length

s so that
_dap

T ds
is a unit tangent vector. The curve is called a geodesic provided
t moves by parallel displacement.

t = t(s) (392)

Recall,
dn =Y "wie; (393)

and
dn-n=20 (394)

Noting that dn is in the tangent space. We also have,

w; = Zbijai (395)

We have computed our structure equations:
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dP = oe (396)

de = Qe (397)
Q+rf = 0 (398)
We have,
do = o2 (399)
Compute,
d’e = d(de) = d(Qe) = (dQ)e — Q(de) (400)
d’e = (dQ2 — Q%)e (401)
Curvature Matrix
Set,
© = 0| = (d — Q?) (402)

the curvature matrix which appears from the symbolic equa-
tion,

d’e = Oe (403)

as representing a ”second derivative” — exactly how one thinks
of curvature in elementry differential geometry.

Continue,
do = o2 (404)
0 = d(do)=(do)Q2—o(dQ?) (405)
= (cQ)Q — o(dQ) (406)
hence,
cO® =0 (407)
From,
0 =d - 0? (408)
we have
d® = d(df) — d(?) (409)
= 0— (dQ)Q + Q(dQ) (410)
= —(0+02H)Q+2(0 + 0% (411)
hence,
d® = N6 — N (412)

which comprises the Bianchi identity.
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11.3 Reimann Curvature Tensor

The 60;; are two-forms which may be written

1
0;; = 3 ZRiijkﬂz (413)

which defines the Reimann curvature Tensor. We have,

Rijri+ Rijus = 0 (414)
Rijk + Rji. = 0 (415)
The relation 0O = 0, or,
> Rijuojone =0 (416)
is equivalent to
Rijki + Rikij + Rijr =0 (417)

11.4 Christoffel Symbols

Consider the definition of I'y, :

wij = Zrijkak (418)
Note o; form a basis. Note, = ||w;;|| and de; = ) w;je; and de = Qe.
Now,
1
do; = 5 > cijrojon (419)
Note o; A o; = 0 so no Cy;; terms.
Also
Cijk + Cikj =0 (420)
Continuing,
1
dO’i = izcijkdj()'k = ZO’j(JJﬁ (421)
1
= ZUjZFjikO'k = §Z(ka —].—‘]“'j)O'jUk (422)
So,
Lijk — Tkij = cijk (423)
we have,
Cijk + Cikj = 0 (424)
Tijp —Tkiy = 0 (425)
Tijk —Thij = cijk (426)
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which has solution,

1
Liji = §(Ckij — Cjki — Cijk) (427)

Compare with the following definition in terms of the metric:
1
Lupy = 5(9%,7 + Guv.8 — 9By (428)

11.5 Examples

Spherical Coordinate System.

x = rsin ¢ cos i + rsin ¢ sin 8j + r cos gk (429)
ox Ix 0x
dx = Edr + %dﬁ + 8—¢d¢ (430)
dx = (dr)e; + (rd¢)es + (rsin ¢pdf)es (431)
e; = sin¢gcosbi—+ sin@sinbj + cos ok (432)
ey = cos¢coshi+ cos@sin@j — sin gk (433)
e3 = —sinfi+ cosfj+ 0k (434)
Thus,
oy = dr (435)
oy = rdo (436)
03 = rsin¢dl (437)
Differentiating,
dep, = (d¢)62 + (Sin ¢d9)e3 (438)
des = (—do)er + (cos pdf)es (439)
des = (—singdf)e; + (—cospdb)es (440)
Now ,
de = Qe (441)

Q is skew-symmetric.

Finally,
0 do sin ¢df
Q= —do 0 cos ¢db (442)

—singdf — cos pdf 0
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Two Sphere
The metric is:
ds? = a%d¢? + a® sin® ¢pd6?
The one-forms are:
01 = sin ¢df
oy = d¢

To find 2 we compute do

doy = cos ¢pdodh

d0'2 =0

Note that 6 A 8 = 0.
We have do = 02. Thus,

0 cos ¢df
(d0'17d0'2):(0'1a0'2) ( 7COS¢)d9 (;b )

Finally,

0- 0 cos ¢pdf
—\ —cos¢db 0

Curvature Matrix
© = |6 = d — 9
02 = 099 since df A df = 0.
oo 0 —(sin ¢)ded6
® =dt = ( (sin ¢)d¢do 0
Now
1
0;; = 3 ZRijklakal

From which,

019 = §(R121201 N0y + Rigg102 N oy)
However, Ri212 + Ri221 = 0.
So that,
012 = Ri21201 A o2
Since,
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(444)
(445)

(446)

(447)

(448)

(449)

(450)

(451)

(452)

(453)

(454)



012 = sin pdpdf = o1 N 09 (455)
Then,

Rig12 =1 (456)

11.6 Covariant Exterior Derivative and the Bianchi
Identity

The next big step is to obtain an expression for the covariant exterior derivative
of the curvature matrix @. But first some preliminaries. All due to Lovelock
and Rund [8]. We agree with [§] that the power is in combining differential
forms and tensor analysis.

Consider a contravariant 2-form
IV = A}, da" A da* (457)

in which the coefficients A{lk represent the components of a type (1,2) tensor
field. Taking the exterior derivative dII,

A7,

dIl =
ox!

dz" A dz® A dat (458)

dz' A da" A dat = %5;;’; aéjis

which is not in general tensorial [g].

”In order to construct a tensorial exterior derivative we have to invoke a
connection, and accordingly it is now assumed that X, is endowed with con-
nection coefficients denoted by I'7, . This allows us to introduce the covariant
derivative of A7 ;181" which is given by,

J aAi’s myJ i m 7 m
Ahj;t = W + Arsrmr - Amsrrt - ArmFst (459)

Define the covariant exterior derivative of the contravariant 2-form by,

rs— mt

. . 1 .
DIV = dIV + g(sgiflm I/ .da" A da® A dat (460)
which is a contravariant 3-form.
Now we need to get this into a more illuminating form.

Define, 4 .
w] =T dx! (461)

Note that this is the expression of the 1-form {2 which recall since the oy
formed a basis could be represented as w;; = > I';jx0%.
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We refer to [§] to obtain the following derived from (460) above,
DIV = dIlV + " Aw] = dIV + w) AT (462)
This is the covariant exterior derivative of the 1-form I17.

Now consider the 2-form H{ ,

I = AJ,, dz" A da® (463)

where A{hk is a type (1,3) tensor field.
In this case the covariant exterior derivative is (see[q]),

DIU) = dIT] + wi ATI} — WP ATE) (464)
Now for the cool part. Recall that for the curvature matrix ©
1
Gij = 5 ZRijklUkUl (465)
Take the covariant exterior derivative of the curvature matrix © using (464)):

DO =do + (20 — NO) (466)
However, based on (412)) above which is from [4],
de = Q60 — 6N (467)

Substituting for d® we obtain,

DO =00-60-(20-002)=0 (468)

DO =0 (469)

As [§] points out this is a remarkable identity.

We will show that it is key to wiring geometry to the energy momentum
tensor as we shall see later.

Absolute Differential

Consider,

DIV = dIF +dIV + 11" A w! = dIV + w) AT (470)
From [§]
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If one regards the components of X7 of a type (1,0) tensor field
as representing n 0-forms, one may write

DX’ = dX7 +w) X" (471)

which by virtue of w{b = F{lexl coincides with the absolute differ-
ential of X7.

Bianchi Identity: Another View
From [7]:

If we choose a frame which is geodesic at a point x%, 9g;;/ oz
will vanish at the point and the two Christoffel symbols will there-
fore also vanish at the point. Thus, all the components of the affin-
ity will vanish at the point and covariant derivatives will reduce to
partial derivatives there. It then follows that the partial derivatives
dgi;/0a* all vanish at the point also (from gir = 0).

In such a geodesic frame, therefore,

; 0 o ort or
iklim = A (F:"kr;'l Il + L. (472)

ox™m oxk ox!

ooy, 0Ty,
© Oxmdxk  Qrmog!
In the above we have F?k = 0 since we have transformed to a frame such
that this is true (Geodesic Frame). Note that this does not mean that the
derivative is zero.
Cyclically permuting the indices k,I,m in the following are obtained:

(473)

R L A 474
JREM T gamzk  9xmoxl (474)
o1 0T,
i jm_ J 4
Bt dxkox!  dzkoxm (475)
, o1 o1
kil = 2 - (476)
JmEE xldzm drldxk
Addition of the three equations yields the following identity:
;’kl;m + R;‘lm;k + R;mk;l =0 (477)

From [7]:

But this is a tensor equation and, having been proved true in the
geodesic frame, must be true in all frames. Also, since the chosen
point can be any point of RV, it is valid at all points of the space.
It is the Bianchi identity.

7



12 How Mass-Energy Generates Curvature

The following is from [3] Chapter 17 and ties it all together. We will quote
liberally.

Mass is the source of gravity. The density of mass-energy as
measured by any observer with 4-velocity u is

p=u-T u=uT,su’ (478)

Therefore the stress-energy tensor T is the frame-independent
”geometric object” that must act as the source of gravity.

This source, this geometric object, is not an arbitrary symmetric
tensor. It must have zero divergence

V-T =0, (479)

because only so can the law of conservation of momentum-energy
be upheld.

Place this source, T, on the righthand side of the equation for
the generation of gravity. On the left hand side will stand a geo-
metric object that characterizes gravity. That object, like T, must
be a symmetric, divergence-free tensor; and if it is to character-
ize gravity, it must be built out of the geometry of spacetime and
nothing but that geometry. Give this object the name, ”Einstein
tensor” and denote it by G, so that the equation for the generation
of gravity reads

G =kT. (480)

The vanishing of the divergence V - G is not to be regarded as
a consequence of V- T = 0. Rather, the obedience of all matter
and fields to the conservation law V- T = 0 is to be regarded (1)
as a consequence of the way they are wired into the geometry of
spacetime, and therefore (2) as required and enforced by an au-
tomatic conservation law , or identity, that holds for any smooth
Riemannian spacetime whatsoever, physical or not: V-G == 0.
Accordingly, look for a symmetric tensor G that is an ”automati-
cally conserved measure of the curvature of spacetime” in the fol-
lowing sense:

(1) G vanishes when spacetime is flat.

(2) G is contructed from the Riemann curvature tensor and the
metric, and from nothing else.
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(3) G is distinguished from other tensors which can be built from
Riemmann and g by the demands (i) that it be linear in Riem-
mann, as befits any natural measure of curvature; (ii) that, like
T, it be symmetric and of second rank; and (iii) that it have an
automatically vanishing divergence,

V- G==0. (481)

Apart from a multiplicative constant, there is only one tensor
that satisfies these requirements of being an automatically con-
served, second-rank tensor, linear in the curvature, and of vanishing
when spacetime is flat. It is the Einstein curvature tensor, G, ex-
presses in terms of the Ricci curvature tensor:

Ru = RS, (482)
Cur = Ruw— 3o R (483)
Recall,
R == RY (484)
R = Rj (485)

where R is referred to as the Curvature Scalar.

The vanishing of V - G follows as a consequence of the elementary
principle of topology that ”the boundary of a boundary is zero”.

We might add that in addition to the quote above from [3] that ”the bound-
ary of a boundary is zero”, in this case, it is a consequence of (469)):

DO =0

13 Final Comments

The relationship (480]) can be written as:

GO'T — Sﬂ—TUT

where we have replaced x with 8. It is important to note that (487)) reduces

to the Newtonian limit specifically when ”gravity is weak, the relative motion
of the sources is much slower than the speed of light ¢, and the material stresses
are much smaller than the mass-energy density (in units where ¢ = 1).” [12].
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For the derivation of the Newtonian limit see [12]. For applications of (487
Jto weak gravity conditions, the Scharzschild solution, Cosmology and Black
Holes see [12], [3], and [2] among others.
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